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Abstracl
In spacecrafi-based radar systems, high-quality images of the planet, satellite, and

comet surface are obtained using the Synthetic Aperture Radar (SAR) method. Moreover, to
provide both wide performance range and great distance resolution, complex radar signals
with inner pulse modulation are applied.

Currently, space SARs use mostly linear frequency modulation (LFM) signals.
However, alongside with their positive features, they also possess some disadvantages. At
the same time, in the recent dozen years or so, signals with internal pulse phase
manipulation (PM) became widely applied.

The results of the paper may be summarized as follows:
l. A mathematical method for synthesizing a new class of PM signals called

generalized complementary signals (GCS), whose ACF features close-to zero side lobe
level has been developed.

2. Through computer simulation of radiolocation systems with inverse synthesized
aperture, the applicability of GCS in prospective spacecrajl-based radar systems has been
proyen.

l.Introduction.
As it is known [1], in spacecraft-based radar systems, the method of

synthetic aperture is widely used in order to obtain high-quality images of
planet, satellite and comet surfaces. In this process, complox radar signals
with inner pulse modulation are applied because they provide both wide
performance range and great distance resolution.

The most important feature of the autocolrelation function (ACF) of
synthetic aperture radar (SAR) signals is the level of their side lobes,
because they determine the dynamic range of the image and the possibility
to identify small objects. At present, in spacecraft-based radars, signals with
linear frequency modulation are widely applied. They were proposed fifty
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years ago, but despite their positive qualities, they have some disadvantages
as well, such as a relatively high level of ACF's side lobes and compiex
generating and processing hardware l2l. In this regard, it should be
emphasized that, recently, signals with inner pulse phase manipulation (pM)
have found wide application in wireless communications. For instance, pM
signalling is the basis of the so-called "Direct Sequence Spread Spectrum"
techniques [3]. As a result, the pM signal generating and piocessing
hardware has improved drastically.

In view of the above-mentioned facts, this paper aims:
- to suggest mathematical methods for synthesis of a new class of

PM signals, named generalized compiementary signals, featuring ACF with
close-to-zero level of the side lobes;

- to illustrate the advantages of the usage of generalized
complementary signals in prospective SARs.

2. Method of phase manipulated complementary signals synthesis
It is known l4l, that PM (or DS-ss) signals represent sequences of n

equivalent elementary pulses which are described by:
_l.i_(1) v(t) = LU ,.uo(t -t,).cos[a4.G -t j) + e jl,
J=l

where:
- U , are the amplitudes of the elementary pulses;

- a4 = 2nf o; fi is the carrier frequency;

u^ft)={f if o1t1ro--u\-/ 
|' o,r/ t10,ort)To

To simplify the practical accomplishment of the complex process of
PM signal receiving, the following limitations in formula (1) are made [ 3,
4l:

- to=Const; U i =Uo=const; j =I,2,...,n;
- 0i e {(2td) I m; I = 0,7,...,m-l} .

In this case, the PM signal can be described as a sequence of
complex amplitudes of elementary signals [4]:

-I-
V (t) = Lu r.((il.uo(t - r ,) ,

"/=l

where {((i)}'l=L is the ser of complex ampritudes of the erementary pulses

and the elements of the set are the m-th roots of the unity:
(2) ((j)e {exp(2nil /m);I = 0,1,..., m-I}.
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(3) R" (ft) = Rt,(k) + Rr(k) =

It is known that complementary series are a parr of two special PM
signals, whose aggregated non-periodical auto-correlation function (ACF)
resembles a delta pulse. The classical Golay's definition of the
complementary series [5] is:

Definition L: The sequences {lr(j)}'l=L, {ry(il}'l=], consisting of n
elements with values + I and -l:
p(j)e {-1,+1}; ryQ)e {-1,+1};j=0,1,...,n-1, are called pair of
complementary series, if:

In (3), the non-periodical

well known formula 13,41:

are defined by the

r-t-ltl

ZE(i)E-(;*ltl) -ot-1)<ft <o
j=0

rt-l-k

Zs*0)s0 *r,), 0<k3x-I
.l=0

Here, the symbol "*" means a complex conjugation. The above
definition of complementary series will be clarified in Fig. 1 by an example
of sequences of code-length n=10:
A0)=-\Al)=-\,t42)=-\,t43)=.\td4)=-LAn=L,4A=-\N)=1,t48)=\/49)=+
{0)=l\dl)=-\ryQ)=1.rtr3)=-\rl4)=-Lrl6)=-\ri;A=\rA=\r1/:8)=-\49)=-1.
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Fig.l. Autocorrelation functions of complementary sequences
withn = 10 elements.

The complementary series are unique among all PM signals for the
following features:

- their aggregated ACF has an ideal shape resembling a delta pulse;
- if a pair of complementary series, consisting of n elements, is

known, then it is easy to create an infinite set of pairs with unlimited code-
length.
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With respect to the second feature, it is necessary to emphasize that
most PM type signals with close to ideal ACF have limited code-length. For
instance, Barker codes exist only for n /-13 

, if n is an odd integer.
In the original Golay's paper, two theorems are proved [5], which

show the way we can obtain derivative complementary series with code-
length 2nl if two pairs of code-length n and r are known, The theorems are
similar and in order to simplify the explanation, they will be combined as
follows.

Theorem I (Golay's Theorem): If the two pairs of complementary
series A = {p(j)}}=i, n = {rt(D}"i=|, ; and C = {€(D}'i=f,, D = {( (il}'i=lo of
code-length n and r respectively, are known, then the derivative pairs of
sequences:

(5a)

K = {6 Q).A, 6 (1).A,..., { (r - I).A, ( (0).8, ( (D.n,..., ( (r - 1).8} ;

t = {((r -7).A, ((r - 2).A,...,((0).A,-((r -1).8,-((r -2).8,...,-4Q).8};
(sb)

M = {€ (0).A, ( (0).8, t Q).e, ( (7).8,..., ( (r - 1).A, ( (r - I).8} ;

W = {( (r - I).A,- ( (r - 7).8, ( (r - 2).A,- € (r - 2).8,..., ( (0).A,- t Q).8} ;

are complementary sequences of code-length 2nr.
Complementary series of code-length n = 2,10,26 are known at

present. Using them and Golay's theorem makes it possible to create infinite
number of complementary series of code-lengths:
(6) n-2".70".26".

It is necessary to emphasize that Golay's definition of
complementary codes is not useful in some important cases. This situation
has motivated some theoreticians like Tseng, Liu, Suehiro, Ignatov | 6, 7,
81, to extend the classical definition. Namely, they have proposed the so-
called "generalized complementary codes" which constitute a set of p
elements (PM signals), the aggregate ACF of all sequences having an ideal
shape resembling a delta pulse. Consequently, Golay's codes are a particular
case of Tseng-Liu codes, where p=2. Now it ought to be seen, that:

- the PM generating hardware is drastically enhanced;
- the binary phase modulation isn't appropriate quite often, because

it restricts the rate of information translation andlor the possible variants in
the process of developing communication devices.
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With regard to this, in the next part of the paper, we shall "coffect"
Definition 1 as follows.

Definition 2: The set of p sequences (PM signals), whose elements
are complex numbers, belonging to the multiplicative group of the mih (
m>2) roots of unity:

o\ {A, = {€,(i)}l!i;a, = {€,(il}'15':...tAo = {€,{i)}}'=i'};
|n(il e {exp(2nil I m);l = 0,I,...,m0 -I};k = 1,2,..., p.

are a set of generalized complementary codes (sequences) if and only if
their aggregate ACF has the ideal shape, resembling a delta pulse:

,) = iR^ (r) =)'=nr+n2+ "'+nPi if r =o;

-ot [ 0; if r =1,2,...,max{no}.
This definition will be illustlated by the following so-far-unknown

complementary codes (m = 4 rn (2), p = 2):

{P(il}3=, = {1,i,U; trtj)}l=o = {1,1,-1} ;
(e)

{p(i)}}=, = {-i,i,\,lJ}; {rt(il}}=o = {1,1,-1,1- l}.
Now we shall see whether it is possible to create sets of

complementary sequences of unlimited code-length, using some initial sets
of complementary sequences of short code-length. In order to reach this
goal, we shall prove a theorem, whose particular case is Golay's theorem.

It should be emphasized that a common theorem couldn't be
developed based on Theorem 1, because the method of Golay, Tseng and
Liu is not applicable for the situation of generalized complementary codes,
according to Definition 2. Therefore, we shall use a new algebraic method
[9]. At the beginning, we shall introduce some terms, used in the common
theorem.

Definition 3: The matrix H r,o = {hu,@)};k =I,2,...,q;l =1,2,...,p
will be called generalized column orthogonal matrix, if:

q'
(10) Lrr,,Q).hi,,,(r.)=]^ ',t.". 

ci=const' if i=s;
k=t 's\--' [0, If i*s;i=I,2,..,,pis=1,2,...,p
The entries of the matrix Hr,o in (10) are polynomials with

equivalent maximal power of x in each column: degho,,(x) = ri -I.
It is easy to see that the column orthogonal matrices satisfy the

equation:
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crO0
0rr0

=

0 0 co

[1 I 111ro 1 1

t"tl
l1 ,. ,'l,lI co 1 ,i.e.,where: a=-!*if;
Ll o)' a] Ll 1 a)

,'=-!-iJ3 .l+at+a'=0.22

(H\T .H

Here:
- the superscript "T" means "changing the places of the rows and

columns";
- the subscripts are omitted in order to simplify the expression.
Examples of the matrix F1 when degh,,o(x) = 0 are:

Now we are able to prove the following common theorem.
Theorem 2: Let H o,o be generalized orthogonal column matrtx, and

Iet {Ar, = {€00)}:r=;',-...r,n-,}oo=, be a set of generalized complementary

sequences, Then the set:
(1 1)

is a set of generalized complementary codes, too. Here, multiplications in
(ll)mean:
(12) hu.Ao = ( u Q).A., (,j (I).An,...., ( y Q, - 1).A0,

tt.

itrl ha@) = (r(r, -11.x"' + (u(r, -2).x',-t +..,+ (u{t).*+ (uQ) .

Proof: The proof will be made using the so-called creative functions
method [10]. According to this method, the ACF of the PM signal will be
presented by the following polynomial:
(14)
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P(x) = F(x).F * (x-') = RKG@- l));-<'-tr + Rrr(-(n-2)).ga-u +... + Rr, (0) +

+..,+ RK(n-2).x"-2 + Rrr(n-L).x''-' - ioo&).xo
1a=_(n-1)

H"r"'
(15) F(x) = (("-I).x''-' + ((n-2).r'-' +...+ ((I).x+ Se) ,

is the polynomial, corresponding to the sequence {((il}",L of complex

amplitudes of the elementary pulses of the PM signal, Ro&) are the ACF

values and F * (x-t ) is the polynomial:
(16)

F*(r-t) = (*(n-l).a-('-u +(*(n-2).;(u-21 +...+(x11).x-1 + ((0).
Applying (14)-(16) in (11) yields:

(r7)

(x

(x

t'j-*

hr(

tn](

,-0'

tos

)h;

-t htjX

easy 1

PYL

fl; .x'

ohi,

t?
L=l

hr(

h,,_I L;;

isI

R,(")=

qp
- \-\-_ L.L

i--1 i=I

f

It

| >r; (x-'" 7.*- 
( 

"n'+ 
r2n21'+ r 

1 - 1rt 1 -t) oj ("-' | =LF" ' 
J

fh r r; - r . *\ - * 
tr i - * *'! r i -'"'' A, (x) Aj -- (, 

-t 
) *

k=l

I

)

-tl j

nj-*

L

'j-*nj

see

>>rr(x"j)hi1x-"t SA (*).e,(ra )= f o,@).Aj(, 'E h,,(x",)hi,@-''r ; =

-')+

0,
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.t,

because: lhu{x"').hi1_01*-"'-')=0,Zh,i-n(rn'o).hr1x-"' )=0, according to
i=1 i=I

(10).
The last equations show that in (11), condition (8) is satisfied.

Hence, set (11) is a set of generalized complementary sequences.

Theorem 2 reduces the problem for synthesis of compiementary
sequences to two steps: first, finding an arbitrary "initial" complementary

set {Ao}oo* and, second, constructing an appropriate "creative" matrix

H o,r. As the above-shown sets (9) are appropriate initial sets, it is enough

to concentrate our efforts on solving the second problem. With regard to
this, it is easy to verify that the following matrices H(x) satisfy condition
(10) [e]:

where:
(19) Bo@) = (o? -l).y"('-t) + (n? -2).a"Q-z) +...+ (r,(I).x" + (o(0),

(20) Ei,e-\ = C,e-1).1-"('-t; + il,? -Z).76-n(r-21 + ...+ il\.x-n + ilQ) ,

and {(o(j)};=l;k=I,2 is an arbitrary set of generalized complementary

sequences of length r and p=).
Construction (11), proven in the paper, will be illustrated by two

examples, where sets (9) of generalized complementary series, will be used.

Let the first one be as follows:
A, = B, = {p( j)}i=o = {1,l,1}; A, = B, = {rtU)}i--o = {1,1,-U .

Applying the construction of Theorem 2, the derivative set of
generalized complementary series of length 2.n.r = 2.3.3 = 18 is obtained:

K = {I,i,l,i,-l,i,l,i,\,U,-I,I,I,-I,-1,-1,1}; 7 = {-1,-i -1,1,i,1,7,i,1,-1,-l,l,i,i,-i,-I,-

In the second example, the sets of generalized complementary series:

A, = Bt = Ut(j)\oi=o = {-i, i,l,l,l}; A, = B, ={rtU)}1=o = {\,i,-l,l- i} 1

are used to develop a set of generalized complementary series of length
2.n.r = 2.5.5 = 50 . The complex parts of the initial and derivative sequences

are shown rnFig.2 and Fig. 3, respectively.

f a,(r' ):8" (x') I f B,(r'"): B"(x'")1(18) H(x)=le,;'u'r-'u,(*'))' H(x)=lo 
a;(*" );-*' Efur') .]'
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Fig.2. Real (a) and imaginary (b) components of the autocorrelation
functions of complementary sequences with n = 5 elements and m = 4.
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Fig.3. Real (a) and imaginary (b) components of the autocorrelation
functions of complementary sequences with n = 50 elements and m = 4.

3. Possibilities for applying phase-manipulated complementary
signals in spacecraft-based radars

The possible advantages of applying sets of generalrzed
complementary sequences are verified by computer experiments. The
operation of a radar using the method of inverse synthetic aperture in the
process of target identification is simulated.

The experiments are based on the geometrical model, proven in [11].
It is assumed that the object is radiated by a pulse sequence of pulse
duration T, repeat period T e and carrier fi'equency f o. During the

experiments, the impact of the type of the inner pulse phase modulation on
the quality of the object image is examined. Namely, the puises of the radar
transmitter are described bv the followins formula:

165

Code sequence 1 auloconelalion funclion

... itr.+,t.t;. fl ..-..t....., -l

.LtL.j

.i......i.,..1.J!i ,[. . ,/i

\l\ltr/ lj rl
ir

i

-i-



(21) u(t) =U oexP{ilatt +blT + Qol} ,

where Uo is the amplitude of the carrier frequency, co = 2do - the angle

frequency; rpo - the initial phase, and the parameter b determines the type of
phase modulation. For instance, in the case of phase modulation with 13-

element Barker code, the parameter b assumes the values:

(22) tu -

0 , t =l,5to;
1 , t=6,7toi
0 , t =8,9r0;
I , t =l}to:'
0 , t =LIro;
| , t =I2to;
0 , t=I3to,

where ro is the duration of the elementary pulses (chips).

The trajectory parameters are:
- the object velocity V = 4001m/ sl;
- the course parameter a = lT lradl;
- the measure of the object space grid cells LX =0.6lml;

LY =0.6lml;
- the initial coordinates of the object xo = 0 fml; yo = 5.104 lml .

The parameters of the radiated pulse sequence are:
- the duration of an PM radiated pulse (in the case of Barker code,

phase modulation) T = 5,2.10-8 [s] ;

- the duration of an elementary pulse (chip) To = 4.10-e [s] ;

- the carrier frequency ,f = 1010 lHzl;
- the number of pulses reflected from the object N, = 500.

In the case of modulation with complementary codes, the following
sequences are applied:

(23) {p(j)}',=o = {+1,+1,+1,-1,+1,+1,-1,+1} ;

{rt Q)}',=o - {+ 1,+1,+1,-1,-1,-I,+1,- U .
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In the odd periods, the first sequence is used, and in the even periods, the
second one. The duration of each sequence ("concatenated" pulse) is

T = 3,2.10-7 lsl .

In Fig. 4-7 , the numerical results of the experiments with models of
the aircrafts Boeing-707 (Fig.4), Falcon-2000 (Fig,5), MiG-29 (Fig.6) and
MiG-35 (Fig.7) are shown.
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Barcel's code Code secluence 1

120

110

100

90

110

100

90

80

70

60

90

BO

70

60

228 230 240 250 260
(b)

Final code sequence

4u zru 2bu 21O 220 2T 248 2fi 2ffi(c) Gt)

Fig. 5. Numerical results of the experiments with model of the aircraft
Faicon-2000 .
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Barcer's code Cocle sequence 1
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Fig.7. Numerical results of the experiments with model of the afucraft
Mic-35.

On the basis of the experimental results, it is easy to see that:
1) If sequences (23) are applied separately, the structural noise is

bigger than the noise in the case of modulation with Barker's codes (Fig.
4a,b,c - Fig. 7a,b,c).

2) If sequences (23) are applied together (in "aggregate"), the
structural noise decreases practically to zero, which results in ideal shape of
the ACF (Fig. ad - Fig. 7d).

4. Conclusions
From everything stated above, it can be easily seen that Theorem 2

generalizes Golay's [5], Liu's, Tseng's, Suehiro's and Ignatov's
constructions [6, 7, 8]. This was revealed upon investigating the common
case where the phase of the PM signals can take m> 2 values. As a result,
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Theorem 2 construction accelerates the process of synthesis of
complementary series with unlimited code-length 2'.n" .ru using
complementary series with short lengths n and r. The advantages in the
design of modern communication devices are also increased because
systems with PM signals with modulated phase according to a set of
generalized complementary series make effective use of the electromagnetic
spectrum.

Having in mind the above-mentioned positive features, the
construction for synthesis of complementary series proven in the paper
couid be used successfully in prospective spacecraft-based radar systems,
where PM signals allow enhancing of the ranging distance without loosing
measursment accuracy and target resolution.
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Bb3MO}KHOCTI,I 3A I,I3IIOJI3BAHE HA @A3OBO
MAIII4IIYJII4PAHI{ KOMIINEMEHTAPHI4 CI,ITHAJIII B
K O C MI4qE C KI4 TE P ANI4 O JI OKAUI4OHHII CI4 C TE MI4

Eopucn ae /Iopdauoe Bedtrcee

B panr4onoKarluoHHr.rre cktcreMv (PJIC), 6asupauu Ha KocMrurqecKrr
ailapaTtr,3a nolyqaBaHe Ha BHcoKoKaqecrBeHIz I43o6paxeHLrt Ha rroBbpxHocTTa Ha
IIJIAHCTPITC, CIIbTHAIIHTE H KOMETI{TC, IIIUPOKO CC NPIIJIAIA METOAbT HA
r43KycrBeHara cr{Hre3}rpaHa arreprypa (Synthetic Aperture Radar - SAR). flpz rona
3a eAHOBpeMeHHOTO peanr43r4paHe Ha ror.rM panr4yc na \efi,cTFue vr Ha BrrcoKa
pa3AenI4TeJIHa cnoco6Hocr rlo pa3crorHr.re ce rr3rroJr3Bar cJroN(Ht4
paAr4onoKarl[4oHkrpr Ql'ilHarfii c BbTpeuHo vMnyJrcHa MoAynallr4rr.

Ha uacroxrqnfl. erar' B I(ocMvqecKr{Te SAR ocHoBHo rrpt4rroxeHrre HaMprpar
cafHaJII4Te c nllHeftHa qecrorHa MoAynallur (nr{M). Btnperz rroJroxr4reJrHrrre LrM

cBofrcrBa, 3a rflx c xapaKTepHlr r{ HrKor{ HeAocrarbrlu. B cbrqoro BpeMe
cr{fHaJrr4re c Br,rperxHo HMnyncHa $a:ona Ma:Hvnyra\plx (oM) HaMepnxa [pe3
no cII eAHr{Te Ae c eT f oArrHu u3KrroqzTeJrHo rxr4p oKo pa3rrpocTp aHeHr{e.

llpe4nz4 Ha v3Jro)KeHr4Te QaKTr.{, B Hacrofqara crarnfl. ca uonyrreHu
cne.4Hure pe3ynTaT}{.

1. Pa:pa6oreH e MareMarr4qecKrr MeroA 3a cI{HTe3 Ha HoB Knac OM
carHaJrrr, HapeqeHr4 o6o6rqeuz KoMrrJreMeHTapHH cvrlr,arv (OKC), rrr4rro AKO
I{Ma CTpaHIrtfkIn nvrcTkl c npaKTI4r{ecKII HyJreBo HIIBO.

2. rlpez KoMnrorr,pHr4 cr{Mynarlvu Ha pa6orara r{a PIIC c r{HBepcHa
cl4HresvpaHa aneprypa e o6ocHoBaHa npvnoxrzMocrra Ha OKC s [epcneKrrrBHr4re
PJIC c KocMurrecKo 6asr.rpaHe.
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