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Abstract 4

In spacecraft-based radar systems, high-quality images of the planet, saiellite, and
comet surface are obtained using the Synthetic Aperture Radar (SAR) method. Moreaver, to
pravide both wide performance range and great distance resolution, complex radar signals
with inner pulse modulation are applied.

Currently, space SARs use mosily linear frequency modulation (LFM) signals.
However, alongside with their positive features, they also possess some disadvantages. At
the same time, in the recent dozen years or se, signals with internal pulse phase
manipulation {PM) became widely applied.

The results of the paper may be summarized as follows:

1. A mathematical method for synthesizing a new class of PM signals called
generalized complementary signals (GCS), whose ACF features close-to zero side lobe
fevel has been developed.

2. Through camputer simulation of radiclocation systems with inverse synthesized
aperture, the applicability of GCS in prospective spacecraft-based radar systems has been
proven.

1. Introduction.

As 1t 1s known [1], in spacecraft-based radar systems, the method of
synthetic aperture is widely used in order to obtain high-quality images of
planet, satellite and comet surfaces. In this process, complex radar signals
with inner pulse modulation are applied because they provide both wide
performance range and great distance resolution.

The most important feature of the autocorrelation function (ACF) of
synthetic aperture radar (SAR) signals is the level of their side lobes,
because they determine the dynamic range of the image and the possibility
to identify small objects. At present, in spacecraft-based radars, signals with
linear frequency modulation are widely applied. They were proposed fifty
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years ago, but despite their positive qualities, they have some disadvantages
as well, such as a relatively high level of ACF’s side lobes and complex
generating and processing hardware [2]. In this regard, it should be
emphasized that, recently, signals with inner pulse phase manipulation (PM)
have found wide application in wireless communications. For instance, PM
signalling is the basis of the so-called “Direct Sequence Spread Spectrum”
techniques [3]. As a result, the PM signal generating and processing
hardware has improved drastically.

In view of the above-mentioned facts, this paper aims:

- to suggest mathematical methods for synthesis of a new class of
PM signals, named generalized complementary signals, featuring ACF with
close-to-zero level of the side lobes;

- to illusirate the advantages of the usage of generalized
complementary signals in prospective SARs.

2. Method of phase manipulated complementary signals synthesis

It is known [4], that PM (or DS-SS) signals represent sequences of n
equivalent elementiary pulses which are described by:

() v =D U ue(t~1,).coslw,(t—1,)+ 6.1,
=1
where;
- U, are the amplitudes of the elementary pulses;

- W, =27, f, is the carrier frequency;
@ 1 if 0<i<z,
Ugtl) = .
° 0,if £<0,0rt>1,

To simplify the practical accomplishment of the complex process of
PM signal receiving, the following limitations in formula (1) are made [ 3,
41

- T, = CORSI; UJ. =U, = const; 7=12,..n;

- 8, e{(2Ay/m, 1=0]1,..m-1}.

In this case, the PM signal can be described as a sequence of
complex amplitudes of elementary signals [4]:

VO =3 UL Do),

where {{( j)}’;.;}} is the set of complex amplitudes of the elcmentary pulses
and the elements of the set are the m-th roots of the unity:

2y L(j)e {exp2ml/m);l =0L,...,m—1}.
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It is known that complementary series are a pair of two special PM
signals, whose aggregated non-periodical auto-correlation function (ACF)
resembles a delta pulse. The classical Golay's definition of the
complementary series [5] is:

Definition 1: The sequences {u(/)Y,, {())},%, consisting of n
elements with values +1 and -1:
HHe =L+ nGe {-1,+1};i=0,1,...,n-1, are «called pair of
complementary series, if:

3 Rc<k)=R,,,<k)+R,?(k)={ R
0k =212, *(n-1
In (3), the non-periodical ACFs R, (k} u R, (k) are defined by the

well known formula [3, 4]:
n—I-—II(I

>ss*(i+lf}  ~@-psr<0
4y R, (k)z]l = .
Scx(fle(j+k),  O<k=n-1
i=0
Here, the symbol "*" means a complex conjugation. The above
definition of complementary series will be clarified in Fig. 1 by an example
of sequences of code-length n=10:

HO =Ly ==L U2y =113 =—1 LY =-1 15 =1 ;6 =L ATy =1 (&) =1 ;) =1,
RO =170 =12 =L73)=-Ly&) =—L7%5) =L KO =L N =Ln&) =-L %9 =-1
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Fig.1. Autocorrelation functions of complementary scquences
with n = 10 clements.

The complementary series are unique among all PM signals for the
following features:

- their aggregated ACF has an ideal shape resembling a delta pulse;

- if a pair of complementary series, consisting of n clements, is
known, then it is easy to create an infinite set of pairs with unlimited code-
length,

158



With respect to the second feature, it is necessary to emphasize that
most PM type signals with close to ideal ACF have limited code-length. For
instance, Barker codes exist only for n <13, if n is an odd integer.

In the original Golay's paper, two theorems are proved [5], which
show the way we can obtain derivative complementary series with code-
length 2n.r if two pairs of code-length n and r are known. The theorems are
similar and in order to simplify the explanation, they will be combined as
follows.

Theorem 1 {Golay's Theorem): If the two pairs of complementary

series A ={u(N}5, B={n()}%s and C={E(D}%, D={{DYL, of
code-length 1 and r respectively, are known, then the derivative pairs of
seqiiences: '

(5a)

K ={EALD.A,. £ -1).A,L(0).B,{1).B,....{ (r - 1).B};
L={{(r-1).A{(r-2).A,..{(0).A-E(r —1).B,~E(r — 2).B,....~E(0).BY;
(3b)

M ={5(0).4,4(0).B.E(M).A,{W).B,.... £(r = DAL (r ~1).BY;
N ={{(r-1).A-¢G—D.B,{(r-2).A~E(r — 2).B,....{ (0).A~E0).B);

are complementary sequences of code-length 2nr.

Complementary series of code-length »=210,26 are known at
present. Using them and Golay’s theorem makes it possible to create infinite
number of complementary series of code-lengths:

6) n=2"10".26"%,

It is mnecessary to emphasize that Golay’s definition of
complementary codes is not useful in some important cases. This situation
has motivated some theorcticians like Tseng, Liu, Suehiro, Ignatov [ 6, 7,
8], to extend the classical definition. Namely, they have proposed the so-
called “generalized complementary codes” which constitute a set of p
clements (PM signals), the aggregate ACF of all sequences having an ideal
shape resembling a delta pulse. Consequently, Golay’s codes arc a particular
case of Tseng-Liu codes, where p=2. Now it ought tc be seen, that:

- the PM generating hardware is drastically enhanced;

- the binary phase modulation isn’t appropriate quite often, because
it restricts the rate of information translation and/or the possible variants in
the process of developing communication devices.
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With regard fo this, in the next part of the paper, we shall “correct”
Definition 1 as follows.

Definition 2: The set of p sequences (PM signals), whose elements
are complex numbers, belonging to the multiplicative group of the m-th (
m> 2 ) roots of unity:

[A =8NS A = &G A, =16 (D' b
&) e {expail/m, )l = 0,1,..., m, -1}k =1,.2,.., p.

are a set of generalized complementary codes {sequences) if and only if
their aggregate ACF has the ideal shape, resembling a deira pulse:

® R(r)—ZRm(r) { = tntotn if r=0

This definjtion will be illustrated by the following so-far-unknown
complementary codes (m=4 in (2), p=2):

(DY =Lilyy  (n(DF o = {LL-1};

(e = {-LELLL ()Y = {11~}

Now we shall sce whether it is possible to create scts of
complementary sequences of unlimited code-length, using some initial sets
of complementary sequences of short code-length. In order to reach this
goal, we shall prove a theorem, whose particular case is Golay's theorem.

It should be emphasized that a common theorem couldn’t be
developed based on Theorem I, because the method of Golay, Tseng and
Liu is not applicable for the situation of generalized complementary codes,
according to Definition 2. Therefore, we shall use a new algebraic method
[8]. At the beginning, we shall introduce some terms, used in the common
theorem.

Definition 3: The matrix H ={h, () }hk=12,.,¢:l=12,.,p

will be called generalized column orthogonal matrix, if:

a . e, ¢, =const, if j=us
(10 th.j(x)‘hk,s (x™) ;{ ! o
k=1

(7)

i r=12,. max{n,}.

®

j *
0, fj#sj=12,. . ,ps=12.p
The entries of the mairix H 0p 1 {10} are polynomials with
equivalent maximal power of x in each column: deg b (xy=r, -1

It is easy fo see that the column orthogonal matrices satisfy the
equation:
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¢, O 0
(H%" H = 0@ ?
¢ ¢ ¢

Here:
- the superscript “T” means “changing the places of the rows and
columns™;
- the subscripts are omitted in order to simplify the expression.
Examples of the matrix H when degh,, (x) =0 are:

1 1 1 w 1 1]
2 . 1 \fi
I o w,|1 w 1],Iie., where: a)=—5+z——;

. 2

l o w I
o’ =—l—i£, l+w+w®=0.
2 2

Now we are able to prove the following common theorem.
Theorem 2: Let H, | be generalized orthogonal column matrix, and

let {A, z{é:k(j)}j'l:;ft..m,‘_'}If:i be a set of generalized complementary

sequences. Then the set:

(1)

(M Ay Ay ey A YRy Ay Ay ey A Ve (B ATy Ay s B ALY

gl q2 ‘qptt e

is a set of generalized complementary codes, too. Here, multiplications in
(11} mean:

(12) R A = 00A,{ DA ... §(n — 1A,
(13)  hy(x)=C 0 —Dx7 £, - Dx7 + L+ (D x+ £,(0).

Proof: The proof will be made using the so-called creative functions
method [10]. According to this method, the ACF of the PM signal will be

presented by the following polynomial:
(14)
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P)=F).F*(x7) = Ry (=(n=D)x " + Ry (=(n—2))x ™" + 4+ R, (0) +
Fot Ry (n- 2).x"7 + Ry (n -Dx"t = ERﬁ (k).x*

k=—{n-1)

Here:

(15)  F(x)=l(n-Dx"" +{(n=2)x"" +...+ {(D).x + £(0),
is the polyncmial, corresponding to the sequence {{( Niice L of complex
amplitudes of the elementary pulses of the PM signal, R, (k} are the ACF

vajues and F*(x™') is the polynomial:
(16)

FXr)=*n-Dx "+ {4 -2 P 4+ .+ Cx(x” + £(0).

Applying {14)-(16) in (11) yields:
(17)

¢ n R e Y | L RULIRTOR R SN Py
x)zz Zh(x;) i ””A }!:Zk(x ) 1Ry ity I"'A( )]
i=l

i=l j=I i=1

=2i o (x" i (x)A, (x )+ izl[ g X A AT (7 )
i j=2 k=1

+hq kh* ‘(; R PIE T I)AJ'--]\- (x)A"f(x"] )J
It is easy to see, that in (17):

373y (R (x‘"f)Aj.(x).A;(x—.')zi A, (x).4;(x )Zhu (X" Ry =

i=l j=l

l.’J‘

— - o A_I — ) . .

= Zc?J A, (x).A; (,x ]— (r:,n, +c,n, +...+LPHP}
7=t

J=1

M«,

[ (™ g ™ Y ettt (50 (et Yo

k=1

Mg # n; =My y) Na#l-1)]
+hu._k(,x i e B i I )]_0,

i=

\.h.
r..i
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Yy

g g
because: D A, (x" ) (7 )=0, Dk, (x"* VA (x™) =0, according to
i=] i=l

(10).

The last cquations show that in (11), condition (8) is satisfied.
Hence, set {11) is a set of generalized complementary sequences.

Theorem 2 reduces the problem for synthesis of complementary
sequences to two steps: first, finding an arbitrary "initial" complementary

set {4,107, and, second, construcling an appropriate "creative” matrix
H, . As the above-shown sets (9) are appropriate initial sets, it is enough

to concentrate our efforts on solving the second problem. With regard to
this, it is easy to verify that the following matrices H(x) satisfy condition
(10) [97:

B xu ,B xn B x2u . B x‘ln

(18) H(x)=|:"“1*( ::) 2"“(* )u :|’ H(;’C)=|i :(N* )2!1 n ""’"2( 7 )
B, (x")=B, {x") x". By (x™ ) —x". B, (x*)
where:

(19 B(x)={-Dx""+{ r-x" P+ + 0"+, (0,
(200 B(x™ =L -Dx" N+ L -2x7 P+ L+ G DT+ 40,
and {{,( j)};;g;k =12 is an arbitrary set of generalized complementary

sequences of length r and p=2.

Construction (11), proven in the paper, will be illustrated by two
examples, where sets (9) of generalized complementary series, will be used.
Let the firsi one be as follows:

A =B = (DY ={Lils A, =B, ={n(H}, ={LL-1}.
Applying the construction of Theorem 2, the derivative set of
generalized complementary series of length 2.n.r = 2.3.3 =18 is obtained:

K={Lili~LiLi,L,L-111-1,-1-11}; L={-1--LLi1Lil,-1,-11,i,i,—i—1-
In the second example, the sets of generalized complementary series:

A =By = {p(DYi ={-00LLL; A, =B, ={n{)}, = {Li-Ll-i},
are used to develop a sct of generalized complementary series of length
2.nr=2.5.5=50. The complex parts of the initial and derivative sequences
are shown in Fig.2 and Fig. 3, respectively.
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Code sequence 1 aulocowalalion fuuclion
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Fig.2. Real (a) and imaginary (b) components of the autocorrelation
functions of complementary sequences with z = 5 elements and m = 4.
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Code sequence 1 autocorelalion fwiction Code sequence 1 avlocerreladion funchion
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Fig.3. Real (a) and imaginary (b) components of the autocorrelaticn
functions of complementary sequences with # = 50 elements and m = 4.

3. Possibilities for applying phase-manipulated complementary
signals in spacecraft-based radars

The possible advantages of applying sets of generalized
complementary sequences are verified by computer experiments. The
operation of a radar using the method of inverse synthetic aperture in the
process of target identification is simulated.

The experiments are based on the geometrical model, proven in {11].
It is assumed that the object is radiated by a pulse sequence of pulse
duration T, repeat period 7, and carrier frequency f,. During the

cxperiments, the impact of the type of the inner pulse phase modulation on
the quality of the object image is examined. Namely, the pulses of the radar
transmitter are described by the foliowing formula:
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(21)  u(@)=U, exp{iler +bm+¢,l},
where U, is the amplitude of the carrier frequency, @ =27f, - the angle
frequency; ¢, - the initial phase, and the parameter b determines the type of

phase modulation. For instance, in the case of phase modulation with 13-
element Barker code, the parameter b agsumes the values:

0, t=1,57,;

1 r=6?€0;

0o, z:@’:o;

22y b=41 , 1=107,;
0, t=1l1z,;

, =127, ;

0, t=137,,

where 7, is the duration of the elementary pulses {(chips).

The trajectory parameters are:

- the object velocity V =400 [m/s];

- the course parameter @ =7z [rad];

- the measure of the object space grid cells AX =0.6[m];
AY =0.6[m];

- the initial coordinates of the object x, =0{m]; y, = 5.10¢ [#].

The parameters of the radiated pulse sequence are:

- the duration of an PM radiated pulse (in the case of Barker code,

phase medulation) 7 = 5,2.107%[s];
- the duration of an elementary pulse (chip) 7, = 4.107 [s];

- the carrier frequency f =10"[Hz];
- the number of pulses reflected from the object N, =500.

In the case of medulation with complementary codes, the following
sequences are applied:

(23)  {u(D) o = (HLAL+L L4141 141}
{??(j)}jﬂ) = {+13+1’+19_1;_19_19+ls_1} .
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In the odd periods, the first sequence is used, and in the even periods, the
second one. The duration of ecach sequence (“concatenated” pulse) is
T =3,2.107[s].

In Fig. 4-7, the numerical results of the experiments with models of
the aircrafts Boeing-707 (Fig.4), Falcon-2000 (Fig.5), MiG-29 (Fig.6) and
Mi(-35 (Fig.7) are shown.

Barcer's code Cocle sequence 1

210 22 23 240 20 260 210 prdl 230 240 250 2B0

(@) i)
Code satjuence 2 Final code sequence

20 20 20 A0 2/ 26D 20 20 7@
fc} {<h

Fig. 4. Numerical results of the experiments with model of the aircraft
Boeing-707.

240 240 260
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Barcer's code Code sequence 1

20 W0 20 40 280 260 20 20 23 M0 B 60
(a) &)

Code saquence 2 Final code sequence

210 23 20 240 250 20 210 220 230 240 250 260

(e} ()
Fig., 5. Numecrical resuits of the experiments with model of the aircraft
Falcon-2000 .
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Barcer's code

210 220

20 M0 %3 M6 I
{a)
Code sequence 2

210 220

230 2450 ] 200 X0
(<)

Code sequence 1

70

40

210

220 230 24 250 60
(b)

Final code sequence

270

70

40

pali)

prul 230 240 25D 25

@

Fig.6, Numerical results of the experiments with model of the aircraft

MiG-29.

270
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Barce's code Colle sequence 1

a0
0
70
70
&0
80
50
50
40
10
30
E 1]
0
20 20 2\ 240 20 20 20 20 20 M0 %0 XD
(a) )
Code sequence 2 Final code sequence
8o 0 ' "
70 0
B B0
0 &0
40 40
30 0
20 e
210 220 0 240 250 0 24D 220 230 240 250 ]
{) Ch

Fig.7. Numerical results of the experiments with model of the aircraft
MiG-35.

On the basis of the experimental results, it is easy to see that:

1) If sequences (23) are applied separately, the structural noise is
bigger than the noise in the case of modulation with Barker’s codes (Fig.
4a,b,c — Fig. 7a,b,c).

2) If sequences (23) are applied together (in “aggregate™), the
structural noise decreases practically to zero, which results in ideal shape of
the ACF (Fig. 4d — Fig. 7d).

4. Conclusions

From everything stated above, it can be easily seen that Theorem 2
generalizes Golay’s [5], Liu’s, Tseng’s, Suehiro’s and Ignatov’s
constructions [6, 7, 8]. This was revealed upon investigating the commoen
case where the phase of the PM signals can take m > 2 values. As a result,
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Theorem 2 construction  accelerates the process of synthesis of

complementary series with unlimited code-length 2°.#°.+" using
complementary series with short lengths n and r. The advantages in the
design of modern communication devices are also increased because
systems with PM signals with modulated phase according to a set of
gencrahized complementary series make effective use of the electromagnetic
spectrum.

Having in mind the above-mentioned positive features, the
construction for synthesis of complementary series proven in the paper
could be used successfully in prospective spacecrafl-based radar systems,
where PM signals allow enhancing of the ranging distance without loosing
measurement accuracy and target resolution.
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Bb3MOXKHOCTH 3A U3IIOJ3BAHE HA ®A30BO
MAHUITYJIHPAHU KOMIVIEMEHTAPHU CUTHAJIH B
KOCMHYECKHUTE PAIMOJIOKAITUOBHHU CUCTEMUI

Fopucnas Hopdaros Bedoces

B panuonoxanpondnre cucremu (PJIC), OGasmpanwt Ha KOCMHMCCKH
anapary, 3a NOMyYaBaHe (4 BHCOKOKAYCCTREHH H300paKeHns Ha IORLPXHOCTTA Ha
INTAHCTHTS, COBTHHUMTC ¥ KOMETHTE, HIMPOKO CC [pWIara METOHLT Ha
n3KycrBenara cuHTesupana aneprypa (Synthetic Aperture Radar - SAR), Ilpu Tosa
3a CHHCBPCMENHOTO Pealu3upadHe Ha TOJsIM PaJUdyC H4 AeliCTBHE M 1A BHCOXA
pasicHMICNHa  Cnoco0NOCT [0 Pa3CTOSHHC  Ce€  H3UON3BAT  CHOKHH
PaLHONOKAIHOHHN CHTLHAIHY C BTPCLINIO UMITYIICHA MOLYHAITHA.

Ha nacrosmms cran B xocMudeckute SAR 0CHORHO NPHIOKEHHE HAMUPAT
CHTHAJIMTC ¢ NUHEHHA yecToTHA MogyNanus (JTIM). BLapexu 10N0KATENHUTE HM
CBOI:ICTB&, 3@ THAX ¢ XapaxKTepH M HEKOM HCHOCTATBIIH. B CBILIOTO BpCMC
CHTHAJIMTE C BBLIPCUIHC AMOyncua ¢asoBa mauunyganug (PM) namepnxa mpes
HOCHCHHUTE JleceT MOJIMAM H3KIIOUHTENHO INHPOKO pasiipocTPaHeHuce.

[Ipenpuy na w3noxenute (axrty, B HACTOAIIATA CTATHA CA NONYUCHH
CHEHKUTE PCIYNTATH.

1. PaspaboTen ¢ MaTCMaTHUYECKH METOH 34 CHHTE: Ha HOB Kiac PM
cUrnany, Hapcuenu o6obuicHu xommnementaphu curmanu (OKC), umsro AKO
YMa CTPAHUYIY JIHCTH C IPAKTHYECKHA HYNERO [IUBO.

2. UYpes KOMIIOTRDHM cuMynalmu Ha paborata na PJIC ¢ unBepcha
curTesupana aleptypa ¢ obocnosana upunoxumocrra Ha OKC B nepcnckusiiuTe
PJIC ¢ xocMmuccko 6asupane.
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